
On the nature of Strings
A deep dive into rel world strings nd how LiquidCche hndles them

Xiangpeng Hao
5th-year PhD@UW-Madison
Database/storage systems
Co-created LiquidCache
Funded by: InfluxData, Bauplan, SpiralDB, tax payers of Wisconsin and federal government

46
Tables

PublicBI Dtset

710
SQL queries analyzed

386GB
Data size

Rel world business intelligence from Tbleu

String: the most importnt dttype

61%
Bytes are string

40%
SQL projections

are string

55%
String columns read

at least once
Non-string:34%

Strings re not creted equl

Each point is a
string column

Short and
repetitive

Long and Unique

Strings cn be ctegorized into 4 types

Distinct ratio

Length

Gender, weather,
country, state…

IDs, SHA, tokens

JSON, XML, URLProse, prompts,
speech-to-text

29%

19%37%

15%

Specil hndling
required!

Distinct rtio ffects encoding

Distinct ratio

Length

Gender, weather,
country, state…

IDs, SHA, tokens

JSON, XML, URLProse, prompts,
speech-to-text

29%

19%37%

15%

Dictionry coding: optimized for repetitive dt

Dictionary encoding Plain encoding

Dictionry encoding in prctice
Distinct ratio

Dictionary encoding Plain encoding

Lower memory
footprint

Fster sorting/
comprisons

Prquet: strts with dictionry
encoding, fllbck to plin encoding

Dictionry encoding is crucil for string opertions

Dictionary encoded data

26 %
Went through a filter
Filter on dictionary, reduce
repetitive filter evaluation

19 %
Went through a hash

aggregation
Directly merge distinct values

55 %
Projection + select

Memory saving, zero-copy of
actual string data

Vrible string lengths complicte storge

Distinct ratio

Length

Gender, weather,
country, state…

IDs, SHA, tokens

JSON, XML, URLProse, prompts,
speech-to-text

29%

19%37%

15%

Vrible string lengths complicte storge

How to hndle vrible-length strings?

Parquet Arrow (StringArray) DataFusion/DuckDB

+ High data locality
- Can’t random lookup
- Slow UTF-8 validation

+ Simple, efficient slice
+ Random lookup

- Single string buffer

+ Multiple buffer, reduced copy
- Extra memory overhead

Prefix mtters

Distinct prefixes
ccelertes

comprisons

Common prefixes
improve

compression

String representtion in ction

Shared prefix

String metadata

Inlined prefix String buffer

How mny bytes to inline?

DtFusion/DuckDB: 4 bytes

Inlined prefix

How mny bytes to inline?

37 %
bytes are needed for a

string sort
rest of the bytes are never used!

Inlined prefix

Long strings hve low entropy

31%
String compression ratio

Overall: 66%

LZ4 / ZSTD
Option 1

General purpose compression

FSST
Option 2

String-specific compression

(needs compression)

Long strings hve low entropy (needs compression)

FSST is independently
decodble!

LZ4 / ZSTD
Option 1

General purpose compression

FSST
Option 2

String-specific compression

Different strings re ll clled “strings”

Distinct ratio

Length

Gender, weather,
country, state…

IDs, SHA, tokens

JSON, XML, URLProse, prompts,
speech-to-text

29%

19%37%

15%

Most common string: Null

Null
Proper null

“Null” | “null”
“Stringified” null

“” | “[]”
Empty means null

“NaN” | “nan”
Not a number is null

“None” | “none”
Rust/Python also has null

Null hndling is importnt

Size
193 GB -> 308 GB

If “null”s are not handled properly:
- Force a column to be string

- Repetitive “null” strings

Sorting
“null”s are everywhere

Expected semantic: nulls
before or after sorted string

Skipping
Cause unnecessary scans

“null” strings breaks:
- min/max values
- common prefix

Putting everything together: string in LiquidCche

2. Dictionry encoding

3. Prefix hndling

4. Compression

1. Null hndling

